

1. MEMO, Eisenstadt, Austria Individual competition, September 22, 2007

1. Let a, b, c, d be positive real numbers with a + b + c + d = 4. Prove that

$$a^2bc + b^2cd + c^2da + d^2ab < 4.$$

- 2. A set of balls contains n balls which are labeled with numbers $1, 2, 3, \ldots, n$. Suppose we are given k > 1 such sets. We want to colour the balls with two colors, black and white, in such a way that
 - (a) the balls labeled with the same number are of the same colour,
 - (b) any subset of k+1 balls with (not necessarily all different) labels $a_1, a_2, \ldots, a_{k+1}$ satisfying the condition $a_1 + a_2 + \ldots + a_k = a_{k+1}$, contains at least one ball of each colour.

Find, depending on k, the greatest possible number n which admits such a colouring.

- 3. Let k be a circle and k_1 , k_2 , k_3 and k_4 four smaller circles with their centres O_1 , O_2 , O_3 and O_4 respectively on k. For i = 1, 2, 3, 4 and $k_5 = k_1$ the circles k_i and k_{i+1} meet at A_i and B_i such that A_i lies on k. The points O_1 , A_1 , O_2 , A_2 , O_3 , A_3 , O_4 , A_4 , lie in that order on k and are pairwise different. Prove that $B_1B_2B_3B_4$ is a rectangle.
- 4. Determine all pairs (x, y) of positive integers satisfying the equation

$$x! + y! = x^y$$
.

Each problem is worth 8 points.

The order of the problems does not depend on their difficulty.

Time: 5 hours

Time for questions: 45 min