2nd MEMO, Olomouc, Czech Republic Individual competition, September 6, 2008

I-1: Let $\left(a_{n}\right)_{n=1}^{\infty}$ be any increasing sequence of positive integers with the following property: for each quadruple of indices (i, j, k, m), where $1 \leq i<j \leq k<m$ and $i+m=j+k$, the inequality $a_{i}+a_{m}>a_{j}+a_{k}$ holds. Determine the least possible value of a_{2008}.

I-2: Consider a $n \times n$ chessboard, where $n>1$ is an integer. In how many ways can we put $2 n-2$ identical stones on the chessboard (each on another square) such that no two stones lie on the same diagonal? (By a diagonal we mean a row of squares whose diagonals of one direction lie on the same line).

I-3: Let $A B C$ be an isosceles triangle with $|A C|=|B C|$. Its incircle touches $A B$ and $B C$ at D and E, respectively. A line (different from $A E$) passes through A and intersects the incircle at F and G. The lines $E F$ and $E G$ intersect the line $A B$ at K and L, respectively. Prove that $|D K|=|D L|$.

I-4: Find all integers k such that for every integer n, the numbers $4 n+1$ and $k n+1$ are relatively prime.

Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.
Time: 5 hours
Time for questions: 45 min

