

$4^{\text {th }}$ Middle European Mathematical Olympiad

Individual Competition
$11^{\text {th }}$ September, 2010

Problem I-1.

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, we have

$$
f(x+y)+f(x) f(y)=f(x y)+(y+1) f(x)+(x+1) f(y) .
$$

Problem I-2.

All positive divisors of a positive integer N are written on a blackboard. Two players A and B play the following game taking alternate moves. In the first move, the player A erases N. If the last erased number is d, then the next player erases either a divisor of d or a multiple of d. The player who cannot make a move loses. Determine all numbers N for which A can win independently of the moves of B.

Problem I-3.

We are given a cyclic quadrilateral $A B C D$ with a point E on the diagonal $A C$ such that $A D=A E$ and $C B=C E$. Let M be the center of the circumcircle k of the triangle $B D E$. The circle k intersects the line $A C$ in the points E and F. Prove that the lines $F M, A D$, and $B C$ meet at one point.

Problem I-4.

Find all positive integers n which satisfy the following two conditions:
(i) n has at least four different positive divisors;
(ii) for any divisors a and b of n satisfying $1<a<b<n$, the number $b-a$ divides n.

Time: 5 hours

Time for questions: 45 min
Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.

