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ALGEBRA

I 1 (Vjekoslav Kovač, Croatia)

Initially, only the integer 44 is written on a board. An integer a on the board can be
replaced with four pairwise different integers a1, a2, a3, a4 such that the arithmetic mean
1
4 (a1 + a2 + a3 + a4) of the four new integers is equal to the number a. In a step we
simultaneously replace all the integers on the board in the above way. After 30 steps we
end up with n = 430 integers b1, b2, . . . , bn on the board. Prove that

b21 + b22 + · · ·+ b2n
n

> 2011 .

First solution

Let us first prove an auxiliary statement.

Lemma. If a1, a2, a3, a4 are four different integers such that their average a = (a1 + a2 +
a3 + a4)/4 is also an integer, then

a21 + a22 + a23 + a24
4

− a2 > 5

2
.

Proof. Note that the expression on the left hand side can be transformed as

a21 + a22 + a23 + a24
4

− a2

=
a21 + a22 + a23 + a24 − 8a2 + 4a2

4

=
a21 + a22 + a23 + a24 − 2a(a1 + a2 + a3 + a4) + 4a2

4

=
(a1 − a)2 + (a2 − a)2 + (a3 − a)2 + (a4 − a)2

4
.

Now, a1 − a, a2 − a, a3 − a, a4 − a are four different integers that add up to 0. We claim
that sum of their squares is at least 10. If none of these integers is 0, then that sum is
at least 12 + (−1)2 + 22 + (−2)2 = 10. On the other hand, if one of the integers is 0,
than the remaining three cannot be only from the set {1,−1, 2,−2}, because no three
different elements of that set add up to 0. Therefore, the sum of their squares is at least
32 + 12 + (−1)2 = 11. This completes the proof of the lemma.

Returning to the given problem, we denote by Sk the average of squares of the numbers
on the board after k steps. More precisely,

Sk =
b2k,1 + b2k,2 + · · ·+ b2

k,4k

4k
,

where bk,1, bk,2, . . . , bk,4k are the numbers appearing on the board after the operation is
performed k times. Applying the above lemma to each of the numbers, adding up these
inequalities, and dividing by 4k, we obtain Sk+1 − Sk > 5

2 , so in particular

S30 > S0 + 30 · 5
2

= 442 + 30 · 5
2

= 2011 .
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Second solution (by Micha l Zaja̧c, Poland)

Let a0,1 = 44 and let ai,1, ai,2, . . . , ai,4i be number written on the board after i steps. In
(i+ 1)-st step we replace the number ai,k with ai+1,4k−3, ai+1,4k−2, ai+1,4k−1 and ai+1,4k.
We denote

Si =

4P
j=1

a2i,j

4i
.

We want to prove that Si+1 > Si + 2.5, with equality occuring when each number a is
replaced by (a − 2, a − 1, a + 1, a + 2). For a given number a, let (b1, b2, b3, b4) be an
arbitrary quadruple of integers that satisfy the conditions that b1 + b2 + b3 + b4 = 4a and
b1 > b2 > b3 > b4. We will prove that (b1, b2, b3, b4) majorizes (a+ 2, a+ 1, a− 1, a− 2).

First we conclude that b1 > a+ 2, otherwise

b1 + b2 + b3 + b4 6 (a+ 1) + a+ (a− 1) + (a− 2) < 4a.

Next, it holds that b1 + b2 > (a+ 2) + (a+ 1) = 2a+ 3.
Otherwise, it holds that b1 + b2 6 2a+2 and thus b2 6 a, b3 6 a− 1 and b4 6 a− 2. This
implies that b1 + b2 + b3 + b4 6 4a− 1 < 4a, which is false.

Finally, in order to prove that b1 + b2 + b3 > 3a + 2, which is equivalent to b4 6 a − 2,
we assume otherwise: b4 > a − 1 and we arrive to contradiction in the same way as in
the first case (in this case the sum is strictly bigger than 4a). Thus, we have proved that
(b1, b2, b3, b4) ≻ (a+ 2, a+ 1, a− 1, a− 2).

The function f(x) = x2 is convex (because f ′′(x) = 2 > 0) and by Karamata inequality it
holds that:

b21 + b22 + b23 + b24 > (a+ 2)2 + (a+ 1)2 + (a− 1)2 + (a− 2)2 = 4a2 + 10.

Similar to first solution, we conclude that Si+1 > Si+2.5 and finally by inductive argument:

S30 > S0 + 30 · 2.5 = 2011.
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T 1 (Tonći Kokan, Croatia)

Find all functions f : R → R such that the equality

y2f(x) + x2f(y) + xy = xyf(x+ y) + x2 + y2

holds for all x, y ∈ R, where R is the set of real numbers.

First solution

Substituting y = 0 we find that x2f(0) = x2 holds for all real numbers x which implies
f(0) = 1.

Let us introduce a new function g : R → R given by g(x) = f(x)− 1. Equation from the
problem becomes

y2g(x) + x2g(y) = xy g(x+ y), (1)

while g(0) = 0.

Denoting c = g(1) and introducing another function h : R → R defined by h(x) = g(x)−cx,
we obviously get h(0) = h(1) = 0, whereas the equation that must be satisfied is now

y2h(x) + x2h(y) = xy h(x+ y). (2)

Substituting x = y = 1 in the last equation we get h(2) = 0, while another substitution
x = −1, y = 1 gives h(−1) = 0.

Let us suppose that there exists a real number y0 such that h(y0) ̸= 0.

Putting x = 1, y = y0 + 1 in (2) we get:

h(y0 + 1) = (y0 + 1)h(y0 + 2), or h(y0 + 2) =
h(y0 + 1)

y0 + 1
. (3)

On the other hand, substituting x = 2, y = y0 in (2) gives

4h(y0) = 2y0h(y0 + 2), i.e. h(y0 + 2) =
2h(y0)

y0
. (4)

Finally, putting x = 1, y = y0 in (2) leads to:

h(y0) = y0h(y0 + 1), or h(y0 + 1) =
h(y0)

y0
. (5)

From (3), (4) and (5) it follows that y0 = −1
2 . However, substituting x = y = −1

2 in (2)
and using h(−1) = 0 we arrive at h(−1

2) = 0, which is a contradiction.

We conclude that h(x) = 0 holds for all x ∈ R and thus f(x) = cx+1 is the only solution.
We check that this really is the solution for every real number c.
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Second solution (by Matija Bašić, coordinator)

We define function h as in the first solution of the problem. Hence, we have h(0) = 0,
h(1) = 0,

y2h(x) + x2h(y) = xyh(x+ y). (∗)

Substituting y = x : 2x2h(x) = x2h(2x), ∀x, or h(2x) = 2h(x) for all x.

Thus h(2) = 0.

Substituting y = −x : x2 (h(x) + h(−x)) = x2h(0) = 0, ∀x, which gives

h(−x) = −h(x), ∀x.

Thus h(−1) = 0.

Put y = 1 in (∗) : h(x) + x2h(1) = xh(x+ 1) i.e.

h(x) = xh(x+ 1) (1)

In (1) we change x → x+ 1

h(x+ 1) = (x+ 1)h(x+ 2) (2)

Put y = 2 in (∗) : 4h(x) + x2h(2) = 2xh(x+ 2) i.e.

2h(x) = xh(x+ 2) (3)

Now we conclude

2(x+ 1)h(x) = (3) = x(x+ 1)h(x+ 2)

= (2) = xh(x+ 1)

= (1) = h(x)

Therefore,
2(x+ 1)h(x) = h(x), ∀x

so h(x) = 0 or 2(x+ 1) = 1 for all x. Obviously, h(x) = 0 for all x ̸= −1
2 .

Moreover, 2h(−1
2) = h(2 · (−1

2)) = h(−1) = 0 so h(−1
2) = 0 holds as well.

We have proved that h(x) = 0 for all x ∈ R, hence, g(x) = cx, f(x) = cx+ 1.

Direct check shows that f(x) = cx+ 1 is the solution of the given functional equation for
all c ∈ R.
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Third solution (by Klemen Šivic, Slovenian leader)

As in the first solution we obtain f(0) = 1 and we define g(x) = f(x)− 1. Then g(0) = 0
and

g(x+ y) =
y

x
g(x) +

x

y
g(y) for x, y ̸= 0. (1)

Therefore

g(x+ y + z) =
y + z

x
g(x) +

x

y + z
g(y + z) =

y + z

x
g(x) +

xy

z(y + z)
g(z) +

xz

y(y + z)
g(y)

for all nonzero x, y and z such that z ̸= −y. However, since the left side of the above
equation is symmetric in x and z, we obtain that

y + z

x
g(x) +

xy

z(y + z)
g(z) +

xz

y(y + z)
g(y) =

y + x

z
g(z) +

zy

x(y + x)
g(x) +

xz

y(y + x)
g(y)

for all nonzero x, y and z such that y ̸= −x and y ̸= −z. In this equation we set y = z = 1
and we obtain

2g(x)

x
+ x g(1) =

1

x(x+ 1)
g(x) +

�
x+ 1 +

x

x+ 1

�
g(1) for all x ̸= 0,−1,

i.e.
2x+ 1

x(x+ 1)
g(x) =

2x+ 1

x+ 1
g(1) for all x ̸= 0,−1.

Therefore

g(x) = g(1)x for allx ̸= 0,−1,−1

2
.

Clearly, the above equation holds also for x = 0. If we set x = 1 and y = −1 into
the equation (1), we obtain g(−1) − g(1), and if we set x = y = −1

2 , then we obtain

−g(1) = g(−1) = 2g
�
−1

2

�
, therefore g

�
−1

2

�
= −g(1)

2 . Hence g(x) = g(1)x for all x ∈ R.
f(1) = a can be arbitrary, therefore all solutions are functions g(x) = ax, or equivalently,
f(x) = ax+ 1 for all x ∈ R, where a ∈ R is arbitrary.

Fourth solution (by team Hungary)

Similar to the first solution, we introduce the function g(x) and prove that g(0) = 0 and
g(−x) = −g(x). Inserting y = 1 and y = −1 into the equation for g(x) we ge:

g(x) + x2g(1) = x g(x+ 1), (1)

g(x) + x2g(−1) = −x g(x− 1). (2)

Inserting x+ 1 instead of x into (2) we get:

g(x+ 1) + (x+ 1)2g(−1) = −(x+ 1) g(x). (3)

From (2) and (3) we get represent g(x+ 1) in two ways:

g(x+ 1) =
g(x) + x2g(1)

x
= −(x+ 1) g(x)− (x+ 1)2g(−1) for x ̸= 0.

Solving for g(x) and using g(−1) = −g(1) we get:

g(x)
�
x2 + x+ 1

�
= g(1)x

�
x2 + x+ 1

�
.

Since x2 + x + 1 > 0 for all x ∈ R we get g(x) = g(1)x and f(x) = cx + 1. Direct check
shows that this is, indeed, the solution of the given functional equation for all c ∈ R.
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T 2 (Kristina Ana Škreb, Croatia)

Let a, b, c be positive real numbers such that

a

1 + a
+

b

1 + b
+

c

1 + c
= 2.

Prove that √
a+

√
b+

√
c

2
> 1√

a
+

1√
b
+

1√
c
.

First solution

Note that the condition of the problem is equivalent to

1

1 + a
+

1

1 + b
+

1

1 + c
= 1. (1)

We want to prove that

√
a+

√
b+

√
c

2
> 1√

a
+

1√
b
+

1√
c

⇐⇒
√
a+

√
b+

√
c > 2

�
1√
a
+

1√
b
+

1√
c

�
⇐⇒

�√
a+

1√
a

�
+

�√
b+

1√
b

�
+

�√
c+

1√
c

�
> 3

�
1√
a
+

1√
b
+

1√
c

�
⇐⇒ a+ 1√

a
+

b+ 1√
b

+
c+ 1√

c
> 3

�
1√
a
+

1√
b
+

1√
c

�
(2)

From (1) we see that at most one of the numbers a, b, and c can be strictly smaller than
1. (Otherwise, we would have 1

1+a + 1
1+b +

1
1+c > 1

2 + 1
2 = 1.)

Without loss of generality we can take a > b > c.

Case 1. a > b > c > 1
We have

√
a
�√

ab− 1
�
>

√
b
�√

ab− 1
�

=⇒ a+ 1√
a

> b+ 1√
b
,

and also √
b
�√

bc− 1
�
>

√
c
�√

bc− 1
�

=⇒ b+ 1√
b

> c+ 1√
c
.

Case 2. a > b > 1, and c < 1
The same way as in Case 1, we get a+1√

a
> b+1√

b
.

Since a, b, and c are positive numbers, (1) implies

1

1 + b
6 1− 1

1 + c
=

c

1 + c
=⇒ bc > 1 =⇒ b > 1

c
.

And this gives

√
b

 Ê
b

c
− 1

!
>
r

1

c

 Ê
b

c
− 1

!
=⇒ b+ 1√

b
> c+ 1√

c
.
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We have showed that

a > b > c =⇒ a+ 1√
a

> b+ 1√
b

> c+ 1√
c

(3)

and

a > b > c =⇒ 1

1 + a
6 1

1 + b
6 1

1 + c
(4)

hold.

Now (3), (4) and the Chebyshev inequality imply

a+ 1√
a

+
b+ 1√

b
+

c+ 1√
c

=

�
a+ 1√

a
+

b+ 1√
b

+
c+ 1√

c

��
1

1 + a
+

1

1 + b
+

1

1 + c

�
> 3

�
1√
a
+

1√
b
+

1√
c

�
,

which is exactly (2).

Second solution (by Klemen Šivic, Slovenian leader)

We make a substitution x = 1
a+1 , y = 1

b+1 , z = 1
c+1 . The condition

1

1 + a
+

1

1 + b
+

1

1 + c
= 1

is then equivalent to
x+ y + z = 1,

and the original variables can be expressed as a = 1
x − 1 = 1−x

x = y+z
x , b = x+z

y and

c = x+y
z . The inequality

√
a+

√
b+

√
c

2
> 1√

a
+

1√
b
+

1√
c

is then equivalent tor
x+ y

2z
+

r
y + z

2x
+

Ê
z + x

2y
>
Ê

2x

y + z
+

Ê
2y

z + x
+

Ê
2z

y + x
.

We will prove that this inequality holds for all positive numbers x, y and z.

We make a substitution p = x + y, q = y + z, r = z + x. Then p, q and r are sides of a
triangle and we have to prove thatr

p

q + r − p
+

r
q

r + p− q
+

r
r

p+ q − r
>
r

p+ q − r

r
+

Ê
q + r − p

p
+

Ê
r + p− q

q
. (1)

Since p, q and r are sides of a triangle, we can write p = 2R sinα, q = 2R sinβ and
r = 2R sin γ, where R is the circumradius and α, β and γ angles of the triangle with sides
p, q and r. Thenr

p

q + r − p
=

Ê
sinα

sinβ + sin γ − sinα
=

s
sin(β + γ)

sinβ + sin γ − sin(β + γ)
=

=

Ì
2 sin β+γ

2 cos β+γ
2

2 sin β+γ
2 (cos β−γ

2 − cos β+γ
2 )

=

Ì
sin α

2

2 sin β
2 sin

γ
2

.
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Similarly we compute the other terms in (1), therefore (1) is equivalent toÌ
sin α

2

2 sin β
2 sin

γ
2

+

Ì
sin β

2

2 sin γ
2 sin

α
2

+

Ì
sin γ

2

2 sin α
2 sin β

2

>

Ì
2 sin α

2 sin β
2

sin γ
2

+

Ì
2 sin β

2 sin
γ
2

sin α
2

+

Ì
2 sin γ

2 sin
α
2

sin β
2

,

or equivalently, to

sin
α

2
+ sin

β

2
+ sin

γ

2
> 2

�
sin

α

2
sin

β

2
+ sin

α

2
sin

γ

2
+ sin

β

2
sin

γ

2

�
=

�
sin

α

2
+ sin

β

2
+ sin

γ

2
)2 − (sin2

α

2
+ sin2

β

2
+ sin2

γ

2

�
.

Since sinx is concave function on (0, π), Jensen’s inequality implies that

sin
α

2
+ sin

β

2
+ sin

γ

2
6 3 sin

α+ β + γ

6
= 3 sin

π

6
=

3

2
.

Therefore

sin
α

2
+ sin

β

2
+ sin

γ

2
> 2

3

�
sin

α

2
+ sin

β

2
+ sin

γ

2

�2

>
�
sin

α

2
+ sin

β

2
+ sin

γ

2

�2

−
�
sin2

α

2
+ sin2

β

2
+ sin2

γ

2

�
,

where at the end we used the arithmetic-quadratic mean. Therefore the inequality is
proved.

Third solution (by team Croatia)

Let a = 2x, b = 2y, c = 2z. Then our condition is equivalent to :

x

1 + 2x
+

y

1 + 2y
+

z

1 + 2z
= 1 ⇐⇒ 1

1 + 2x
+

1

1 + 2y
+

1

1 + 2z
= 2.

and we need to prove that

√
x+

√
y +

√
z > 1√

x
+

1
√
y
+

1√
z
,

which is equivalent to :X
cyc

x− 1√
x

> 0 ⇐⇒
X
cyc

x− 1

2x+ 1
· 2x+ 1√

x
> 0.

Since this inequality is symmetric, we can assume x > y > z. We prove that then:

x− 1

2x+ 1
> y − 1

2y + 1
> z − 1

2z + 1
(1)

and
2x+ 1√

x
> 2y + 1

√
y

> 2z + 1√
z

. (2)

In order to prove (1) we note that:

x− 1

2x+ 1
> y − 1

2y + 1
⇐⇒ 3x > 3y,

which holds. The same argument holds for y and z.
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In order to prove (2) we factor the inequality in the following equivalent way:

(
√
x−√

y)(2
√
xy − 1) > 0.

By the assumption,
√
x−√

y > 0 thus we need to prove that 2
√
xy − 1 > 0. Assume the

opposite, ie. that 4xy < 1. Then:

1

1 + 2x
+

1

1 + 2y
=

2(1 + x+ y)

1 + 2(x+ y) + 4xy
= 1 +

1− 4xy

(1 + 2x)(1 + 2y)
> 1,

which contradicts the condition.

We have proven that triplets�
x− 1

2x+ 1
,
y − 1

2y + 1
,
z − 1

2z + 1

�
and

�
2x+ 1√

x
,
2y + 1
√
y

,
2z + 1√

z

�
are ordered in the same way thus by Chebyshev inequality we have:X

cyc

�
x− 1

2x+ 1
· 2x+ 1√

x

�
> 1

3

X
cyc

x− 1

2x+ 1
·
X
cyc

2x+ 1√
x

= 0.
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COMBINATORICS

I 2 (Tomislav Pejković, Croatia)

Let n > 3 be an integer. John and Mary play the following game: First John labels the
sides of a regular n-gon with the numbers 1, 2, . . . , n in whatever order he wants, using
each number exactly once. Then Mary divides this n-gon into triangles by drawing n− 3
diagonals which do not intersect each other inside the n-gon. All these diagonals are
labeled with number 1. Into each of the triangles the product of the numbers on its sides
is written. Let S be the sum of those n− 2 products.

Determine the value of S if Mary wants the number S to be as small as possible and John
wants S to be as large as possible and if they both make the best possible choices.

Solution (by Rudi Mrazović, coordinator)

For n = 3 the answer is 6. Suppose n > 4. It is obvious that in each triangulation there
are at least two triangles that share two sides with the polygon. We will prove that it
is always best for Mary to choose a triangulation for which there is no more than two
triangles of this kind.

We call a triangle in a triangulation bad if all of its sides are diagonals of the polygon. First
we prove that Mary can choose an optimal triangulation that contains no bad triangles.
Assume on the contrary that every optimal triangulation contains a bad triangle. For an
optimal triangulation T let d(T ) be the length of the smallest side of all bad triangles in
T . Among all optimal triangulations with minimal number of bad triangles let T0 be such
that d(T0) is minimal.

Consider a bad triangle ABC in T0 such that |AB| = d(T0). Let ABD be the other

triangle of T0 that contains AB as one of its sides. Since D lies on the arc øAB of the
circumcircle of ABC that does not contain C and ^ACB is acute, we have |AD| < |AB|
and |BD| < |AB|.

Let T1 be the triangulation obtained from T0 by replacing AB with CD. If the sides AD
and BD have labels a and b respectively, then

S(T1)− S(T0) = a+ b− ab− 1 = −(a− 1)(b− 1) 6 0.

Because T0 is optimal triangulation, we conclude that T1 is also optimal. Since T0 has the
minimal number of bad triangles at least one of the segments AD and BD should be a
diagonal, but then d(T1) is less than d(T0) what is a contradiction.

Now that we know that Mary can choose an optimal triangulation that contains no bad
triangles, we easily conclude that in a such triangulation there are exactly two triangles
that share two sides with the polygon. If we denote by x1 (respectively x2) the number
of triangles that have exactly one (respectively two) of their sides being the sides of the
polygon, then x1 + x2 = n− 2 and x1 + 2x2 = n, so x2 = 2.

Mary’s strategy is to choose these two triangles so that the side of the polygon labeled
with 1 is contained in one of these triangles and the side labeled with 2 is contained in
the other.
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By this strategy Mary makes sure that

S 6 max

(
n(n+ 1)

2
− (1 + 2 + n+ n− 1) + 1 · n+ 2 · (n− 1),

n(n+ 1)

2
− (1 + 2 + n+ n− 1) + 1 · (n− 1) + 2 · n

)
=

n2 + 3n− 6

2
.

On the other hand, John can force Mary to achieve exactly this bound by labeling the
sides of the polygon in the following order

1, n− 1, 4, n− 3, 5, . . . , n− 2, 3, n, 2.

Thus, the answer to our problem is S =
n2 + 3n− 6

2
, for each n > 3.
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T 3 (Viktor Harangi, Hungary)

For an integer n > 3, let M be the set {(x, y) | x, y ∈ Z, 1 6 x 6 n, 1 6 y 6 n} of points
in the plane. (Z is the set of integers.)

What is the maximum possible number of points in a subset S ⊆ M which does not
contain three distinct points being the vertices of a right triangle?

Solution

We will prove that the maximal cardinality of S is 2n− 2.

The set
S = {1} × {2, . . . , n} ∪ {2, . . . , n} × {1}

has cardinality 2n − 2 and it does not contain three distinct points that form a right
triangle.

We will show that any subset S ⊂ M which does not contain three distinct points that
form a right triangle can have at most 2n− 2 points. For such set S consider its subsets:

• Sx consists of those points P = (x, y) in S that have unique x coordinate, that is,
there exists no y′ ̸= y such that (x, y′) ∈ S.

• Sy consists of those points P = (x, y) in S that have unique y coordinate, that is,
there exists no x′ ̸= x such that (x′, y) ∈ S.

We claim that S = Sx ∪ Sy. We prove this by contradiction. Assume ther exists a point
P ∈ S\(Sx∪Sy). Since P /∈ Sx, there exists Px ̸= P in S with the same x coordinate as P .
Similarly, there exists Py ̸= P in S with the same y coordinate as P . Hence P, Px, Py ∈ S
and ^PxPPy = 90◦, a contradiction.

Clearly, |Sx| 6 n, and if |Sx| = n, then S = Sx. The same holds for Sy. So, |S| = n or
|Sx|, |Sy| 6 n− 1 and |S| 6 |Sx|+ |Sy| 6 2n− 2. It follows that the cardinality of S is at
most max(n, 2n− 2) = 2n− 2.
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T 4 (Vjekoslav Kovač, Croatia)

Let n > 3 be an integer. At a MEMO-like competition, there are 3n participants, there
are n languages spoken, and each participant speaks exactly three different languages.

Prove that at least
¡
2n

9

¤
of the spoken languages can be chosen in such a way that no

participant speaks more than two of the chosen languages.

(⌈x⌉ is the smallest integer which is greater than or equal to x.)

First solution

Consider the classifications of the set of n available languages into easy, medium, and
hard languages. There are 3n possible classifications in total and we denote by S the set
of all possible classifications. For each classification s ∈ S, let A(s) be the number of easy
languages and let B(s) be the number of students who speak 3 easy languages.

If we add up quantities A(s) over all possible classifications s ∈ S, the resulting sum will
be
P

s∈S A(s) = n3n−1. In order to verify that, we realize that the result should be the
same for medium and hard languages too, but all three of these sums add up to

3
X
s∈S

A(s) = number of classifications × number of languages = 3n · n .

On the other hand, we use double counting to compute the sum of quantities B(s) over
all possible classifications s ∈ S.

For each student there are 3n−3 classifications for which he speaks 3 easy languages, as
we only have the choice to classify each of the n− 3 languages that the student does not
speak. In two ways, we count the cardinality of the set

{(X, s) : for a classification s student X speaks 3 easy languages}

to get the identity X
s∈S

B(s) = 3n · 3n−3 = n3n−2 .

We claim that there exists a classification s ∈ S such that A(s)−B(s) > 2n
9 . If we assume

on the contrary that A(s)−B(s) < 2n
9 for all classifications s ∈ S, then summing over all

3n of them would give

n3n−1 − n3n−2 =
X
s∈S

A(s)−
X
s∈S

B(s) < 3n · 2n
9

,

i.e. 2n3n−2 < 2n3n−2, which is a contradiction.

Let us consider any classification s ∈ S of languages satisfying A(s)−B(s) > 2n
9 . We can

first choose all A(s) easy languages. Then we find all B(s) students who can speak 3 of
these languages, and for each of them we remove one of the languages the student speaks.
This leaves us with a choice of at least 2n

9 languages.

Remark: Classification of languages simply as easy or hard would not give the desired
bound. It would lead to a choice of at least n

8 languages only. Taking more than three
language classes would not be a better strategy either.

13



Solution (by Rudi Mrazović, coordinator)

In this proof we will use probabilistic method. Let p ∈ [0, 1]. For each language, suppose
we choose it with probability p and we make these decisions independently. 1 Let A be
the number of chosen languages (i.e. the number of 1s in ω) and B the number of students
whose all three languages are among chosen ones. Lets calculate the expectations 2 of
these random variables.

EA = E

24 X
language l

1we have chosen the language l

35 =
X

language l

E [1we have chosen the language l]

=
X

language l

P (we have chosen the language l) = np.

EB = E
" X
student s

1student’s s languages are all chosen

#
=

X
student s

E [1student’s s languages are all chosen]

=
X

student s

P (student’s s languages are all chosen) = 3np3.

We will use the following obvious (and easily proved inequality). For arbitrary random
variable X we have

P(X > EX) > 0.

For X = A−B we get
P(A−B > np− 3np3) > 0.

In this way we have proved that there is a choosing of languages such that A − B >
np− 3np3. For this choosing for each student that speaks three chosen languages remove
one of them. In the end we are left with at least A − B (and thus np − 3np3) languages
that do the job. Taking p = 1

3 we get what we need, i.e. we can choose at least ⌈2n9 ⌉ such
that no student speaks more than two of them.

Alternative approach (based on the solution by team Poland)

We choose ⌈n3 ⌉ languages uniformly and randomly. Similarly to the previous probabilistic
solution we show that with positive probability the number of students that speak three
of the chosen languages is less or equal to ⌊n9 ⌋. Again, use the same trick of removing
some of the languages to obtain at least ⌈2n9 ⌉ of them such that no student speaks three
of them.

1Formally, we consider probability space ({0, 1}n,P({0, 1}n),P) where

P(ω) = pk(ω)(1− p)n−k(ω), for each ω ∈ {0, 1}n

where k(ω) is the number of 1s in ω.
2The expectation of integer random variable X is the number EX =

Pn

k=0
kP(X = k).
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GEOMETRY

I 3 (Nik Stopar, Slovenia)

In a plane the circles K1 and K2 with centers I1 and I2, respectively, intersect in two points
A and B. Assume that ^I1AI2 is obtuse. The tangent to K1 in A intersects K2 again in
C and the tangent to K2 in A intersects K1 again in D. Let K3 be the circumcircle of
the triangle BCD. Let E be the midpoint of that arc CD of K3 that contains B. The
lines AC and AD intersect K3 again in K and L, respectively. Prove that the line AE is
perpendicular to KL.

First solution (by Tomislav Pejković, coordinator)

K1

K2

K3

A

B
C

D

E

K

L

Since AD is tangent to K2, it follows that ^ACB = ^DAB. Similarly, ^ADB = ^BAC.

From this we have ^DBC = (^ADB+^DAB)+(^BAC+^ACB) = 2(^DAB+^BAC),
hence

^DBC = 2^DAC.

By øXY we denote the angle ^XZY where Z is a point on the circle K3 such that X,Y, Z
are ordered counterclockwise.

Since E is the midpoint of the arc CD and the points C,E,D,K are concyclic we have

^AKE =
1

2
øCD =

1

2
(180◦ −øDC) =

1

2
(180◦ − ^CBD) = 90◦ − ^DAC.

This means that KE and AL are perpendicular.

Analogously, LE and AK are perpendicular and E is the orthocenter of the triangle AKL.
Hence AE and KL are perpendicular.
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Remark: We use the notation øCD and øDC because it provides a convenient way of writ-
ing the solution in all cases regardless of the mutual position of the points A,D,L,C,K.

Second solution

Since AD is tangent to K2, it follows that ^ACB = ^DAB. Similarly, ^ADB = ^BAC.

From this we have ^DBC = (^ADB+^DAB)+(^BAC+^ACB) = 2(^DAB+^BAC),
hence

^DEC = ^DBC = 2^DAC.

Since |ED| = |EC|, the point E is the circumcenter of ACD. Therefore |EC| = |EA| =
|ED|.

Because the points C,B,D,K are concyclic we have ^KDB = ^ACB. From this and
the first arguments of this solution we have that |DK| = |AK|. Since we proved |EA| =
|ED|, we conclude that the line KE is the bisector of the segment AD and therefore
perpendicular to it.

Analogously, LE and AK are perpendicular and E is the orthocenter of the triangle AKL.
Hence AE and KL are perpendicular.

Remark: The identity ^KDB = ^ACB holds in all cases regardless of the mutual
position of the points A,D,L,C,K.

Third solution (by Karol Kaszuba, Poland)

Let us apply inversion with respect to a circle with the center A and radius r. Denote the
image of point X with X ′. From the assumptions of the problem and well known facts
about the inversion directly follows that AD′B′C ′ is a parallelogram.

From the definition of the image of the point by inversion we have

|E′C ′| = |EC| r2

|AE||AC|
, |E′D′| = |ED| r2

|AE||AD|
.

Dividing these two identities and using that E is the midpoint of the arc øCD we obtain

|E′C ′|
|E′D′|

=
|EC|
|ED|

· |AD|
|AC|

=
|AD|
|AC|

=
|AC ′|
|AD′|

=
|D′B′|
|C ′B′|

.

We consider all points X with the property

|XC ′|
|XD′|

=
|D′B′|
|C ′B′|

.

These points form the Apollonius circle and hence there are exactly two such points
intersecting the image of K3, each on different arc ùC ′D′. One of these is the point E′.
Since the point symmetric to B′ with respect to the line C ′D′ also lies on the same arcùC ′D′ as E′ and lies on the mentioned Apollonius circle we conclude that E′ is symmetric
to B′.
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This implies |E′C ′| = |B′D′| = |C ′A′| (first equality holds because of the symmetry
the second because AD′B′C ′ is a parallelogram) and similarly |E′D′| = |D′A′|. Hence
AC ′E′D′ is a deltoid so AE′ ⊥ C ′D′. This means that AE′ contains the orthocenter of
the triangle AC ′D′. It is well know that the orthocenter and circumcenter are isogonal
conjugates (lying on the lines which are symmetric with respect to the angle bisector). On
the other hand triangles AC ′D′ and AL′K ′ are inversely similar, so the circumcenter of
AK ′L′ lies on the same line through A as the orthocenter of AC ′D′.

All of this shows that AE′ pass through the circumcenter of AK ′L′, so AE is perpendicular
to KL.
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T 5 (Michal Szabados, Slovakia)

Let ABCDE be a convex pentagon with all five sides equal in length. The diagonals AD
and EC meet in S with ^ASE = 60◦. Prove that ABCDE has a pair of parallel sides.

First solution

Let F be such that DEF is an equilateral triangle and the points B and F lay in the
opposite half-planes determined by DE. Denote ^DAE = α. Then ^ADE = α.

A

B

C

D

E

F

S

Since ^ESD = 120◦ , we have ^DEC = 60◦ − α. Then ^SCD = ^ECD and

^ADC = ^SDC = 180◦ − ^SCD − ^DSC = 60◦ + α.

Obviously ^ADF = 60◦ + α and because |FD| = |CD| we conclude that ADF ≃ ADC.
Similarly, ^AEC = ^FEC = 120◦ − α, so ACE ∼= FCE.

From these two pairs of equal triangles we conclude |AF | = |AC| = |FC|, so both triangles
DEF and ACF are equilateral.

If E lies on the line AF or D lies on the line FC then |AC| = 2|ED| = |AB|+ |BC| and
B lies on AC, which is not possible. Therefore exactly one of the points D and E lays
inside the triangle ACF . Without loss of generality, let it be the point E.

The triangles AEF and ABC have their corresponding sides equal therefore AEF ∼= ABC
and this yields 60◦ = ^FAC = ^EAB, so |EB| = |AB|. Hence BCDE is a rhombus,
i. e., ED ∥ BC.
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Second solution (by Matija Bašić, coordinator)

Let α be as in the first solution. In the same way we prove ^AEC = 120◦ − α and
^CED = 60◦ − α. Let F be the symmetric image of A with respect to CE. We get
^DEF = 120◦ − α − (60◦ − α) = 60◦. Since |DE| = |AE| = |EF |, triangle DEF is
equilateral.

Because |AB| = |BC| = |DF | = |CD| the triangles ABC and CDF are congruent.

If the point D is outside the triangle ACF then this implies that B and D are symmetric
with respect to CE, so |BE| = |DE|. Hence BCDE is a rhombus and DE∥BC.

If the point D is inside the triangle ACF then the point E is outside that triangle and we
see in the similar way that F and C are symmetric with respect to AD and also B and
E are symmetric with respect to AD. Hence |BD| = |DE| and ABDE is a rhombus, so
DE ∥ AB.

Third solution (by Gerd Baron, Austrian leader)

Define the point B′ such that B′CDE is rhombus.

If the pentagon AB′CDE is convex, denote ^EAD = ^EDA = α. Similarly to other
solution we have ^AEB′ = ^AED−^B′EC−^CED = 180◦−2α−(60◦−α)−(60◦−α) =
60◦.

Since |AE| = |B′E|, we conclude that AB′E is equilateral.

Points B and B′ are on the same side of the line AC, so we conclude that B = B′, so
DE ∥ AB.

If the pentagon AB′CDE is not convex, denote the intersection of B′E and AD by F and
^DEC = ^DCE = β. Similarly to other solutions we have AEB′ = 180◦ − ^EAF −
^EFA = 180◦ − ^EDA− (^FEC + ^FSE) = 180◦ − (60◦ − β)− (β + 60◦) = 60◦.

Since |AE| = |B′E|, we conclude that AB′E is equilateral.

Let B′′ be the symmetric image of B′ with respect to AC. Then AB′′CB′ is a rhombus
and B = B′′, so we conclude B′C ∥ AB′′ and hence DE ∥ AB.
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Fourth solution (by team Slovakia)

Denote ^DEC = ^DCE = α and suppose that all five sides of the pentagon have length
a. As in the previous solutions we see that ^SEA = 60◦+α,^SDC = 120◦−α. Applying
the law of sines to the triangles ASE and CSD implies

|SA| = a sin(60◦ + α)

sin 60◦
=

a sin(120◦ − α)

sin 60◦
= |SC|.

The triangle ASC is isosceles and ^ACS = ^CAS = 30◦ and we have |AC| =
√
3 · |AS|.

The law of cosines applied to the triangle ABC gives

a2 = a2 + 3|AS|2 − 2
√
3a · |AS| · cos(^ACB)

from where we get cos(^ACB) =
3|AS|
2
√
3a

= sin(60◦ + α) = cos(30◦ − α).

Since 0 < ^ACB < 90◦ we have two possibilities.

The first possibility is that ^ACB = 30◦ − α, so ^BCE = α = ^CED and hence
BC ∥ ED.

The second possibility is that ^ACB = α−30◦, so ^BAD = 60◦−α = ^ADE and hence
AB ∥ ED.

Fifth solution (by team Germany)

We construct a point Q on the line SE such that ASQ is the equilateral triangle. As in
the previous solutions it is easily seen that ^EAQ = ^DCS and since ^AQS = 60◦ =
^CSD and |AE| = |DC| we have that the triangle AEQ and SCD are congruent, so
|AS| = |AQ| = |CS|.

This shows that the quadrilateral ABCS is a deltoid, so ^ASB = ^BSC = 60◦ and the
point S is the Fermat’s point of the triangle BDE.

Let point X be such that BEX is equilateral and that S and X lie on different sides of
the line EB. It is well know that the property of the Fermat’s point S is that X,S and
D are collinear. Also, since |BX| = |EX|, X lies on the bisector of the segment BE.

We have two cases. In the first case, the segment bisector of BE coincides with the line
DS, so ABDE is a rhombus and AB ∥ ED.

In the second case, the segment bisector of BE intersects the line AS at exactly one point.
From the remarks we have given, that point must be X and also A, so A = X. Then the
triangle BEA is equilateral, so ABCD is a rhombus and BC ∥ ED.

20



T 6, (Michal Roĺınek, Josef Tkadlec, Czech Republic)

Let ABC be an acute triangle. Denote by B0 and C0 the feet of the altitudes from vertices
B and C, respectively. Let X be a point inside the triangle ABC such that the line BX
is tangent to the circumcircle of the triangle AXC0 and the line CX is tangent to the
circumcircle of the triangle AXB0. Show that the line AX is perpendicular to BC.

First solution

A B

C

A0

C0

X

H

Let A0 be the foot of the altitude from A. The quadrilateral ACA0C0 is cyclic because
^AA0C = ^AC0C = 90◦. By the power of the point B with respect to that circle we have
|BA||BC0| = |BA0||BC|.

The power of the point B with respect to the circumcircle of AXC0 gives |BX|2 =
|BA||BC0|.

Similarly, we have |CX|2 = |CA||CB0| = |CA0||BC|.

Summing these two results we have

|BX|2 + |CX|2 = |BA0||BC|+ |CA0||BC| = |BC|2.

The converse of Pythagora’s theorem implies ^BXC = 90◦.

Moreover, from |BX|2 = |BA0||BC|, i.e. |BX| : |BC| = |BA0| : |BX| we have that the
triangles BXA0 and BCX are similar. It follows that

^BA0X = ^BXC = 90◦ = ^BA0A,

so A0, X and A are collinear, so AX and BC are perpendicular.
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Second solution (by Tomislav Pejković, coordinator)

Let H be the orthocenter of the triangle ABC. Because BX is tangent to the circumcircle
of AXC0 we have ^BXC0 = ^BAX (the tangent chord angle theorem). Hence the
triangles BAX and BXC0 are similar.

Analogously, the triangle CAX and CXB0 are similar.

A B

C

H

B0

C0

X

Observe that the quadrilateral AC0HB0 is cyclic because ^AC0H = ^AB0H = 90◦. The
power of the point B with respect to circumcircles of AC0X and AC0HB0 gives

|BB0||BH| = |BA||BC0| = |BX|2.

From this we conclude that the triangles BXH and BB0X are similar and ^BXH =
^XB0H = ^XB0C−90◦. Since CAX and CXB0 are similar we have ^XB0C = ^AXC.
We obtained ^BXH = ^AXC − 90◦ and analogously ^CXH = ^AXB − 90◦.

Summing up these results we get

^BXC = ^BXH + ^CXH = ^AXC + ^AXB − 180◦ = 180◦ − ^BXC

and so ^BXC = 90◦.

Hence, the points B,C0, X,B0, C all lie on the same circle and we have

^AXB = ^BC0X = 180◦ − ^XB0B = 180◦ − ^BXH

which means that A,X and H are collinear. So AX and BC are perpendicular.
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Third solution (by teams Croatia, Hungary and Poland)

By power of the point we have

|CX|2 = |CA||CB0|, |BX|2 = |BA||BC0|,

so the point X is the intersection of the circle with center C and radius
È
|CA||CB0| and

the circle with center B and radius
È
|BA||BC0|. There are two such points, but only one

is in the interior of the triangle ABC, so we conclude that the point X is unique.

On the other hand we will prove that the point Y which is the intersection of the circle
with diameter BC and the altitude from the point A has the same properties as the point
X, from which we conclude that X and Y are the same point and hence X lies on the line
perpendicular to BC.

Since ^BB0C = 90◦, the quadrilateral BCB0Y is cyclic and hence ^CBB0 = ^CY B0.
On the other hand ^CAY = 90◦−^ACB = ^CBB0 = ^CY B0, so by the tangent-chord
theorem the line CY is tangent to the circumcircle of the triangle AY B0. Analogously,
the line BY is tangent to the circumcircle of the triangle AY C0. Hence, X = Y .
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NUMBER THEORY

I 4 (Kamil Duszenko, Poland)

Let k and m, with k > m, be positive integers such that the number km(k2 − m2) is
divisible by k3 −m3. Prove that (k −m)3 > 3km.

First solution

Let d be the greatest common divisor of k and m. Write k = da, m = db. Then a and b
are relatively prime. Moreover, a > b.

The number km
�
k2 −m2

�
= d4ab

�
a2 − b2

�
= d4ab(a− b)(a+ b) is divisible by k3−m3 =

d3(a3 − b3) = d3(a− b)(a2 + ab+ b2), so we have

a2 + ab+ b2 | dab(a+ b).

However, since the numbers a and b are relatively prime, the number a2+ab+b2 is relatively
prime to a, b, and a+b. (For example, in case of a+b we note that a2+ab+b2 = (a+b)a+b2,
and a+ b is relatively prime to b and hence to b2.) Thus

a2 + ab+ b2 | d.

This, in particular, yields d > a2 + ab+ b2 = (a− b)2 + 3ab > 3ab. Therefore

(k −m)3 = d3(a− b)3 > d3 = d2 · d > d2 · 3ab = 3km.

Second solution (by Wojciech Nadara, Poland)

Since k2+km+m2 divides km(k+m) and (k2+km+m2)(k+m) we have that it divides
their difference (k +m)(k2 +m2) = k3 + k2m + km2 +m3. From this we conclude that
k2 + km+m2 also divides k3 + k2m+ km2 +m3 − k(k2 + km+m2) = m3.

Analogously, we conclude that k2 + km+m2 divides k3.

Multiplying the second power of k2 + km+m2 | k3 with k2 + km+m2 | m3 we conclude
(k2 + km+m2)3 | k6m3. Hence k2 + km+m2 also divides k2m and analogously km2.

Adding all the results we have obtained we conclude that k2 + km + m2 divides k3 −
3k2m+ 3km2 −m3 = (k −m)3.

Because k > m, i.e. k −m > 0, we have k2 + km+m2 6 (k −m)3.

Since (k −m)2 is equivalent to k2 + km+m2 > 3km, we obtain 3km < (k −m)3.
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T 7 (Mariusz Skaba, Poland)

Let A and B be disjoint nonempty sets with A ∪ B = {1, 2, 3, . . . , 10}. Show that there
exist elements a ∈ A and b ∈ B such that the number a3 + ab2 + b3 is divisible by 11.

Solution

For each n = 0, 1, 2, . . . the numbers 2n, 2n+1, 2n+2, . . . , 2n+9 have different remainders
when divided by 11.

Suppose that for every b ∈ B there is no a ∈ A such that a ≡ 2b (mod 11).

From the above statement there exists n ∈ {0, 1, . . . , 9} such that b ≡ 2n (mod 11) and
we conclude that elements of B give ten different remainders when divided by 11, so B
has 10 elements. That is a contradiction with the fact that A is nonempty.

Therefore there exist b ∈ B and a ∈ A such that a ≡ 2b (mod 11), and we have

a3 + ab2 + b3 ≡ 8b3 + 2b3 + b3 = 11b3 ≡ 0 (mod 11).
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T 8 (Aivaras Novikas, Lithuania)

We call a positive integer n amazing if there exist positive integers a, b, c such that the
equality

n = (b, c)(a, bc) + (c, a)(b, ca) + (a, b)(c, ab)

holds. Prove that there exist 2011 consecutive positive integers which are amazing.
(By (m,n) we denote the greatest common divisor of positive integers m and n.)

Solution

We may choose such positive integers x1, x2, . . . , x2011 that the numbers

y1 = x21(x1 + 2), y2 = x22(x2 + 2), . . . , y2011 = x22011(x2011 + 2)

are pairwise coprime. For example, we may choose x1 = 1 and xi = y1y2 . . . yi−1 − 1 for
every consecutive i. This choice guarantees that for every integer 2 6 i 6 2011 both xi
and xi + 2 (hence, yi as well) are coprime with any of the numbers y1, y2, . . . , yi−1.

If a positive integer n is divisible by any of the numbers y1, y2, . . . , y2011 then it is amazing.
Indeed, if, say, n = yim = x2i (xi+2)m for some positive integers m and 1 6 i 6 2011 then
n = (b, c)(a, bc) + (c, a)(b, ca) + (a, b)(c, ab) for a = mx2i , b = mxi, c = xi.

Since the numbers y1, y2, . . . , y2011 are pairwise coprime, the Chinese remainder theorem
implies that there exists a positive integer k satisfying the equalities

k ≡ −i (mod yi), i = 1, 2, . . . , 2011.

This means that k+i is divisible by yi for any 1 6 i 6 2011. Thus, the consecutive positive
integers k + 1, k + 2, . . . , k + 2011 are all amazing, and the statement of the problem is
proved.
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