

1. MEMO, Eisenstadt, Austria Individual competition, September 22, 2007

1. Let a, b, c, d be positive real numbers with $a+b+c+d=4$. Prove that

$$
a^{2} b c+b^{2} c d+c^{2} d a+d^{2} a b \leq 4
$$

2. A set of balls contains n balls which are labeled with numbers $1,2,3, \ldots, n$. Suppose we are given $k>1$ such sets. We want to colour the balls with two colors, black and white, in such a way that
(a) the balls labeled with the same number are of the same colour,
(b) any subset of $k+1$ balls with (not necessarily all different) labels a_{1}, a_{2}, \ldots, a_{k+1} satisfying the condition $a_{1}+a_{2}+\ldots+a_{k}=a_{k+1}$, contains at least one ball of each colour.

Find, depending on k, the greatest possible number n which admits such a colouring.
3. Let k be a circle and k_{1}, k_{2}, k_{3} and k_{4} four smaller circles with their centres O_{1}, O_{2}, O_{3} and O_{4} respectively on k. For $i=1,2,3,4$ and $k_{5}=k_{1}$ the circles k_{i} and k_{i+1} meet at A_{i} and B_{i} such that A_{i} lies on k. The points $O_{1}, A_{1}, O_{2}, A_{2}, O_{3}, A_{3}, O_{4}, A_{4}$, lie in that order on k and are pairwise different. Prove that $B_{1} B_{2} B_{3} B_{4}$ is a rectangle.
4. Determine all pairs (x, y) of positive integers satisfying the equation

$$
x!+y!=x^{y} .
$$

Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.
Time: 5 hours
Time for questions: 45 min

