1. MEMO, Eisenstadt, Austria Team competition, September 23, 2007

5. Let a, b, c, d be arbitrary real numbers from the closed interval $\left[\frac{1}{2}, 2\right]$ satisfying $a b c d=1$. Find the maximal value of

$$
\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{d}\right)\left(d+\frac{1}{a}\right) .
$$

6. For a set P of five points in the plane in general position, we denote the number of acute-angled triangles with vertices in P by $a(P)$ (a set of points is said to be in general position if no three points lie on a line). Determine the maximal value of $a(P)$ over all possible sets P.
7. Let $s(T)$ denote the sum of the lengths of the edges of a tetrahedron T. We consider tetrahedra with the property that the six lengths of their edges are pairwise different positive integers, where one of them is 2 and and another one of them is 3 .
8. Find all positive integers n for which there exists a tetrahedron T with $s(T)=n$.
9. How many such pairwise non congruent tetrahedra T with $s(T)=2007$ exist?

Two tetrahedra are said to be non congruent, if one cannot be transformed by reflections with respect to planes, translations and/or rotations into the other.
(It is not necessary to prove that the tetrahedra are not degenerated i.e. have positive volume.)
8. Determine all positive integers k with the following property: there exists an integer a such that $(a+k)^{3}-a^{3}$ is a multiple of 2007 .

Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.
Time: 5 hours
Time for questions: 45 min

