2nd MEMO, Olomouc, Czech Republic Team competition, September 7, 2008

$\mathrm{T}-1$: Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ (so, f is a function from the real numbers to the real numbers) such that

$$
x f(x+x y)=x f(x)+f\left(x^{2}\right) f(y)
$$

for all real numbers x and y.
$\mathrm{T}-2$: In a given n-tuple of positive integers with $n \geq 2$, we choose in each step a pair of numbers and replace each of them by their sum, i.e. we make the transformation

$$
(\ldots, a, \ldots, b, \ldots) \rightarrow(\ldots, a+b, \ldots, a+b, \ldots)
$$

Determine all values of n for which, after a finite number of steps, we can get an n-tuple of identical numbers from any initial n-tuple.

T-3: Given an acute-angled triangle $A B C$, let E be a point situated on the different side of the line $A C$ than B, and let D be an interior point of the line segment $A E$. Suppose that $\angle A D B=\angle C D E, \angle B A D=\angle E C D$ and $\angle A C B=\angle E B A$. Prove that B, C and E are collinear.

T-4: Let n be a positive integer. Prove that if the sum of all positive divisors of n is a perfect power of 2 , then the number of these divisors is also a perfect power of 2 .

Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.
Time: 5 hours
Time for questions: 45 min

