

$3^{\text {rd }}$ Middle European Mathematical Olympiad

Individual Competition
$26^{\text {th }}$ September, 2009

ProblemI-1.

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x f(y))+f(f(x)+f(y))=y f(x)+f(x+f(y))
$$

for all $x, y \in \mathbb{R}$, where \mathbb{R} denotes the set of real numbers.

ProblemI-2.

Suppose that we have $n \geqslant 3$ distinct colours. Let $f(n)$ be the greatest integer with the property that every side and every diagonal of a convex polygon with $f(n)$ vertices can be coloured with one of n colours in the following way:

- at least two distinct colours are used, and
- any three vertices of the polygon determine either three segments of the same colour or of three different colours.

Show that $f(n) \leqslant(n-1)^{2}$ with equality for infinitely many values of n.

ProblemI-3.

Let $A B C D$ be a convex quadrilateral such that $A B$ and $C D$ are not parallel and $A B=C D$. The midpoints of the diagonals $A C$ and $B D$ are E and F. The line $E F$ meets segments $A B$ and $C D$ at G and H, respectively. Show that $\Varangle A G H=\Varangle D H G$.

ProblemI-4.

Determine all integers $k \geqslant 2$ such that for all pairs (m, n) of different positive integers not greater than k, the number $n^{n-1}-m^{m-1}$ is not divisible by k.

Time: 5 hours
Time for questions: 30 min
Each problem is worth 8 points.
The order of the problems does not depend on their difficulty.

