language: English

5th Middle European Mathematical Olympiad

INDIVIDUAL COMPETITION

3rd September 2011

Problem I-1.

Initially, only the integer 44 is written on a board. An integer a on the board can be replaced with four pairwise different integers a_1 , a_2 , a_3 , a_4 such that the arithmetic mean $\frac{1}{4}(a_1 + a_2 + a_3 + a_4)$ of the four new integers is equal to the number a. In a step we simultaneously replace all the integers on the board in the above way. After 30 steps we end up with $n = 4^{30}$ integers b_1, b_2, \ldots, b_n on the board. Prove that

$$\frac{b_1^2 + b_2^2 + \ldots + b_n^2}{n} \ge 2011 \,.$$

Problem I-2.

Let $n \geq 3$ be an integer. John and Mary play the following game: First John labels the sides of a regular *n*-gon with the numbers $1, 2, \ldots, n$ in whatever order he wants, using each number exactly once. Then Mary divides this *n*-gon into triangles by drawing n-3 diagonals which do not intersect each other inside the *n*-gon. All these diagonals are labeled with number 1. Into each of the triangles the product of the numbers on its sides is written. Let S be the sum of those n-2 products.

Determine the value of S if Mary wants the number S to be as small as possible and John wants S to be as large as possible and if they both make the best possible choices.

Problem I-3.

In a plane the circles \mathcal{K}_1 and \mathcal{K}_2 with centers I_1 and I_2 , respectively, intersect in two points Aand B. Assume that $\angle I_1 A I_2$ is obtuse. The tangent to \mathcal{K}_1 in A intersects \mathcal{K}_2 again in C and the tangent to \mathcal{K}_2 in A intersects \mathcal{K}_1 again in D. Let \mathcal{K}_3 be the circumcircle of the triangle BCD. Let E be the midpoint of that arc CD of \mathcal{K}_3 that contains B. The lines AC and ADintersect \mathcal{K}_3 again in K and L, respectively. Prove that the line AE is perpendicular to KL.

Problem I-4.

Let k and m, with k > m, be positive integers such that the number $km(k^2 - m^2)$ is divisible by $k^3 - m^3$. Prove that $(k - m)^3 > 3km$.

Time: 5 hours Time for questions: 45 min Each problem is worth 8 points. The order of the problems does not depend on their difficulty.