

language: English

$5^{\rm th}$ Middle European Mathematical Olympiad

TEAM COMPETITION 4th September 2011

Problem T-1. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that the equality

$$y^{2}f(x) + x^{2}f(y) + xy = xyf(x+y) + x^{2} + y^{2}$$

holds for all $x, y \in \mathbb{R}$, where \mathbb{R} is the set of real numbers.

Problem T-2.

Let a, b, c be positive real numbers such that

$$\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=2.$$

Prove that

$$\frac{\sqrt{a} + \sqrt{b} + \sqrt{c}}{2} \ge \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} + \frac{1}{\sqrt{c}}.$$

Problem T-3.

For an integer $n \ge 3$, let \mathcal{M} be the set $\{(x, y) \mid x, y \in \mathbb{Z}, 1 \le x \le n, 1 \le y \le n\}$ of points in the plane. (\mathbb{Z} is the set of integers.)

What is the maximum possible number of points in a subset $S \subseteq \mathcal{M}$ which does not contain three distinct points being the vertices of a right triangle?

Problem T-4.

Let $n \ge 3$ be an integer. At a MEMO-like competition, there are 3n participants, there are n languages spoken, and each participant speaks exactly three different languages.

Prove that at least $\left\lceil \frac{2n}{9} \right\rceil$ of the spoken languages can be chosen in such a way that no participant speaks more than two of the chosen languages.

 $(\lceil x \rceil$ is the smallest integer which is greater than or equal to x.)

Problem T-5.

Let ABCDE be a convex pentagon with all five sides equal in length. The diagonals AD and EC meet in S with $\angle ASE = 60^{\circ}$. Prove that ABCDE has a pair of parallel sides.

Problem T-6.

Let ABC be an acute triangle. Denote by B_0 and C_0 the feet of the altitudes from vertices B and C, respectively. Let X be a point inside the triangle ABC such that the line BX is tangent to the circumcircle of the triangle AXC_0 and the line CX is tangent to the circumcircle of the triangle AXB_0 . Show that the line AX is perpendicular to BC.

Problem T-7.

Let A and B be disjoint nonempty sets with $A \cup B = \{1, 2, 3, ..., 10\}$. Show that there exist elements $a \in A$ and $b \in B$ such that the number $a^3 + ab^2 + b^3$ is divisible by 11.

Problem T-8.

We call a positive integer n amazing if there exist positive integers a, b, c such that the equality

$$n = (b,c)(a,bc) + (c,a)(b,ca) + (a,b)(c,ab)$$

holds. Prove that there exist 2011 consecutive positive integers which are amazing. (By (m, n) we denote the greatest common divisor of positive integers m and n.)

Time: 5 hours Time for questions: 45 min Each problem is worth 8 points. The order of the problems does not depend on their difficulty.